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i. Introduction

} In Part I of this work (Metcalfe and Orszag, 1975) the numerical

simulation of detailed turbulent flow fields was reported. Here in

Part II, these jet flow fields were used to study the radiated sound

field, and in addition, to extend and test the capabilities of the

turbulent jet simulation codes. The goal of this work is to complementD
the theoretical and experimental research programs of the NASA Langley

Research Center on aerodynamic noise generation. The computer simulations

of Metcalfe and Orszag (1975) provide a variety of data that are very

difficult or even impossible to obtain by other methods.O
The principal new result of the present work is the computation of

=he radiated sound field from a turbulent jet. In addition, the computer

codes have been extended to account for the effects of compressibility and

eddy viscosity, and the treatment of the nonlinear terms of the Navier-
O

Stokes equations has been modified so that they can be computed in a

semi-lmplicit way. In See. 2 of this report is a summary of the flow

model and a description of =he numerical methods used for its solution.

In Sec. 3, calculations of the radiated sound field are reported. In
I

Sec. 4, the extensions that have been made to the fundamental dynamical

codes are described. Finally, in Sec. 5, the current state-of-the-art for

computer simulation of turbulent jet noise is summarized.

!
!
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2. Flow Model and Numerical Methods

The basic flow model to determine the jet flow field is based on the

Navier-Stokes equations for incompressible flow. At low Mach number, the

acoustic components of the flow field are only weakly coupled to the shear

(rotational) components so that the flow field can be determined to a good

approximation by neglecting the weakly excited acoustic field. After the

rotational flow is determined by numerical integration of the Navier-Stokes

equations, the acoustic field can be determined by Lighthill's perturbation

procedure from the quadrupole moments of the flow field. The latter calcu-

lation is reported in Sec. 3.

The Navier-Stokes equations for incompressible flow are

_-y+_ ._ = -Vp + _v2_ (l)

V • _ = 0 (2)

where _(_,t) is the velocity at _,t, p(_,t) is the pressure, _ is the •

kinematic viscosity, and the density p is assumed to be i. The numerical

simulation of a turbulent jet flow field using (1)-(2) is beset with two

major difficulties: first, the required computer resolution to calculate a

high Reynolds number flow accurately is enormous; and, second, the boundary •

conditions that must be imDosed to simulate a Jet are very difficult to

impose. Because of these problems, the flow model was further simplified as

discussed below. Laboratory experiments, such as those of Liu and Maestrello

(1974) have determined the large-scale mean-flow characteristics accurately,

so these flow characteristics are reasonably chosen to be _ to the

numerical computations. The numerical computations are then used to predict

the quadrupole moment distribution given the large-scale mean-flow character-

istics of the turbulence. Since the quadrupole source terms are dominated by

small-scale motions and since the small-scale motions of turbulence are

determined by the loca____!llarge-scale characteristics, it follows that _

the acoustic source terms can be effectively determined by isolatlng -:

• a small local section of the Jet. This avoids the two difficulties

mentioned above. First, because a small section of the Jet is being _

simulated, it is not necessary to simulate at one time all twenty or

, _-
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so jet diameters in the downstream direction that contribut_ to the noise

p generation by the jet. Second, within each loc_l section o_ the jet, it is

most reasonable to impose periodic boundary conditions because only local

turbulence is being studied. The turbulence witl,in each jet section is,

however, strongly affected by the mean flow characteristics that are imposed,

the latter being those appropriate to the jet section being simulated.
l

In summary, the flow model involves the isolation of a local section of

the jet, imposition of periodic boundary conditions, maintenance for all

time of the experimentally observed mean-flow characteristics, and numerical

integration of th_ Navier-Stokes equations in time until a statistically
t

steady state is achieved. After evolving the flow in this way, the quadrupole

moments are extracted from the statistically steady turbulent state and used

in the manner described in Sec. 3 to determine the radiated acoustic field.

In accord with this flow model, the velocity field is expressed as
t

_(_,t) 1 _(_) + _1 (_,t) (3)

where V is the imposed mean velocity (constant for all time) and _' is

the fluctuating velocity. At all downstream locations the mean velocity

is of the form

_(_) 1 U fr)xl (_)

where xl is a unit vector in the xi direction , r is the distance from

the Jet axis, and U(r) is the experimentally determined profile (see Fig. i).

The Navler-Stokes equations are integrated by e.xpre_sing the velocity

field in terms of (special) Fourier series of the form

-- E E E -* *v(x,t) = u(k,t)exp(2_ik.x) . (5)

Ikll<kl[k21<k2 [k3l<k3

in fact, the Fourier expansion (5) is specialized so that the velocity field

that is represented has zero stress boundary conditions imposed on =he x 2

and x3 boundaries; these latter boundary conditions are a convenient way oft,

"" handling the potential flow outside the Jet without imposition of complicated

entrainment boundary condIuions. Altogether, 32,768 independent Fourier

t
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components are used to represent each component of the velocity field, so

that about 105 independent data are used to represent the complete flow

field. The nume:ical solution of the Navier-Stokes equations proceeds by

using the Fourier representation (5) together with the fast Fourier transform

to allow efficient evaluation of derivatives appearing in the equations.

Time-stepping is performed by a fractional step technique in which leapfrog 4

lifferencing is used to evaluate the nonlinear terms in (i) and Crank-

Nicolson implicit differencing is used to evaluate the viscous terms. A

semi-implicit scheme for the evaluation of the nonlinear terms is described

in Sec. 4. (

The mean velocity profile U(r) in (5) was chosen to correspond to the

experimentally determined profile of an axisymmetric cold subsonic jet, as

parametrized by Maestrello, et al. (1974). This velocity profile is p_otted

in Fig. 2 at three downstream locations, 4, 8, and 12 Jet diameters 4
downstream. Also, the mean turbulent intensities and their radial variation

is imposed following the parametrlzation of Liu and Maestrello (1974); the

radial variation of the rms turbulent intensity at 4, 8, and 12 jet diameters

downstream is plotted in Fig. 3. |

In order to give perspective on the degree of complication of the

velocity field in these calculations, in Figs. 4 and 5 contours of the

xI component of the velocity field for the simulation performed at 12

diameters downstream from the Jet exit are plotted. In Fig. 4, the contours
t

of v I are plotted in the x2-x 3 plane a= xI - 12 diameters _t t - 0.32 ,

after a statistically steady state has been achieved. In Fig. 5, the

contours of vI are plotted at the same time of evolution in the Xl-X 3

plane passing through the center of the Jet.
q

f
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3. Radiated Sound Field From a Turbulent Jet

• According to Lighthiil's theory (1952) of aerodynamic sound generation,

the _ound radiated by turbulence satlsfies the inhomogeneous wave equation

_2_ c272o = ____=!_=2
?t---_ - _xi_xj Tij E Q(_,t) (6)

where

Tij - PoViVj (7)

Here po - i is the unperturbed (non-acoustic) density in the flow field

while P(_,t) is the fluctuating density field, i.e., the radiated acouszlc

field. The solution to (6) that satisfies the outgoing radiation condition

at _ is

l ./ O y,t- xc4_TC2

which is Lighthill's integral solution for the radiated sound field.

In the work reported here, the Lighthill integral solution (8) has

been used to determine acoustic radiation characteristics similar to those

measured by Maestrello (1973) in a careful analysis of the radiation patterns

of a turbulent Jet. Maestrello measured the correlation coefficient of

derivatives of the pressure:

where the derivatives are taken along the radial direction normal to the jet

axls and the overbar indicates average. Maestrello reported extensive

measurements of R_7p,Vp for various separation vectors _ and time shifts r.

It is possible to use the Lighthill integral (8) to obtain an explicit

expression for --R_p,7p in terms of the source distribution Tid.j To do this,

it must be noted that ?p = c2VG in the acoustic field so that --R_p,Vp

can be computed 5y correlating gradients of (8). In particular, it follows

that

A
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RVp,Tp(_,t;_ + 7, t + T)

i

1 2 2' _ Q i,t - Q ,t+r
/

1

x i___'ll ;_+_ _i 1 dy I dy 2 (i0)

4
Expression (i0) is used to obtain the principal results reported below.

Before proceeding to report these results, a simple argument can be

made to establish the essential features of the correlation (I0). Ass_m_e

that Jet turbulence has a local spatial correlation scale L and a local 4
time correlation scale T Also assume that the local field of turbulence

is converted at the large speed U of the Jet past a fixed frame of

referevtce. I_L that case the integrand of (I0) dlffer_ significantly from

Tij(Yl,U l) Tkl(Y2,= 2) , i.e., the uncorrelated average of the source terzs, 9

only if lyI - y21 & L and

cT +_R D < cT

q
where D is the Jet diameter. Assume R = Ixl - + >> D so that

the two observation points lie on the same cylindrical sleeve around the

turbulent Jet and both points lie in the far field of the radiation pattern.

Here % = _Yl is the distance between the two observation points. If it is

further assumed that the turbulence scale L is a constant fraction of the

local Jet diameter D , some interesting scaling conclusions may be drawn.

First, the correlation (I0) should decay to zero in a time scale proportional

to T(1 - c@M) where ¢ is a constant, @ is the ansular separation

between x and x + y (@ " _/R, where R = x + " I ), and M - U/c is

the local Jet Mach number. S_cond, equal time correlations T = 0 should

decay to zero over a distance

i
-- (11)

; M

t
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where % is the angular separation of x and x + y . It will be interesting

to determine whether the correlations determined experimentally behave according

to (ii) in the far field. It seems that the data of Maestrello (1973) does not

yet provide sufficient information to test (II). Equation (ll) has not yet

been tested against the present numerical data, although it is certainly

possible to do this. However, it seems that (ii) is built into the present

numerical scheme automatically because (i0) is assumed =o be true. Equation

(ii) follows from (i0), as shown above, by very crude turbulence theory

arguments, which seem to be well satisfied by the numerical simulations.

The experimental configuration for Maestrello's (1973) measurements was

a 213 m/s cold Jet with exit diameter 0.0625 m. Maest.ello made measurements

at a number of downstream stations as illustrated in Fig. 6. Here, =he

numerical simulation of his results for station 5 (for which the most data

is available) has been attempted. Station 5 of the laboratory experimen_ is

at 7.42 diameters downstream from the Jet exit, and the numerical simulation

consists of isolating a Jet section at 8 diameters downstream. The acoustic

field is then determined along a cyllnd_ical sleeve whose axis is aligned with

the Jec axis and whose radius is 5 local jet diameters (radius 46 cm).

The numerical computations of RT_p,Vp(_,r) , where _ is the circumfer-

ential separation of two points on the measuring cylinder at the same axial

distance downstream and T is the time separation between the measurements,

were performed as follows. First, the statistically steady turbulent flow

at 8 Jet diameters downs=ream was calculated as described in Sec. 2. The

computational domain extended over three Jet diameters in the downstream

direction. Second, the quadrupole source distributions resulting from these

calculations was substituted into the Lighthill integral (8) and the acoustic

field was determined over the whole cylindrical sleeve about the Jet. In

performing the latter computation, the local Mach number was assumed to be

the same as for the 213 m/s Jet studied by Maestrello. It was also assumed

t_t no significant contributions to the acoustic field come from regions of

the Jet more distant than the present computational domain, i.e., more distant

than 3 Jet diameters from the local position in =he axial direction. After

finding the acoustic field in this way, the correlation _R_p,Tp(_'T) was found

1976023833-009
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by averaging the results for all available points with the given space and

time separations over the cylindrical sleeve (this average being justified

by the axisymmetry of the flow) and over time (this average being Justified

by the sta_.istical stationarity of the flow).

The results for the correlation __Rvp,Vp(_'r) at station 5 are shown

in Fig. 7. These results bear some striking similarity to Maestrello's

results, but they are also in substantial disagreement. The general

structure of the correlations is very similar to those measured by

Maestrello (see his Fig. 14 reproduced here as Fig. 8). The correlations

have significant negative regions; they decay to zero rapidly with increasing

and T • However, there are some significant discrepancies. First,

Maestrello's data does not show the sy,metry of the numerical data plotted

in Fig. 7; this symmetry is built into the numerical experiments to high

accuracy because of the way the a_erage _p,Vp is obtained. The numerical

data do not show any displacement of the correlation peak as a function of

r Also, the time scale over which the numerical correlations decay to% •

zero is about twice as long as the time scale over which the experimental

data decays to zero.

There are several possible explanations for these discrepancies between

the numerical and laboratory data. If it is assumed that there are no

systematic experimental errors (which seems fully Justified by recent

repetitions of the experiments), one must conclude that the discrepancies

are due to either: (i) a Reynolds number effect (since the Reynolds number

of the simulations iq an order of magnitude less than =hat of _he experl-

ments); (ii) the effect of the simplified boundary conditions in the flow

model; (ill) an effect of compressibility; (iv) an effect of departures

from statistical stationarlty in the numerical simulations; (v) an effect

of lack of computer resolution in performing the averases or integrals;

or (vl) a measure of the inaccuracy of Lighthill's integral (8) for the

radiated sound. Of all these possibilities, it is believed that the most

likely causes of the error are (il), (iv), (1), (vi), (v), (ill), in order

of decreasln8 likelihood. However, it is not possible to state with

certainty at this time the precise cause of the quantitative discrepancies.

In summary, the qualitative nature of the radiated sound field bears

$ood relation to the experiments of Haescrello (1973), but there is some -

quantitative disagreement. Nevertheless, there is ample ground

Q

-t
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for believing that a high-resolution numerical experiment, say one

performed on an advanced scientific computer like the CDC STAR, will give

both good quantitative and qualitative agreement with laboratory (and

field) experiment.

A I

I
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4. Numerical Methods

Three major modifications have been made to the numerical methods used

by Metcalfe and Orszag (1975) in order to improve the fiow model _or

J turbulent Jec flow. These improvements are: (1) a semi-implicit treatment

of the nonlinear terms; (ii) modification of the incompressible flow

program to treat isentropic compressible flow; and (iii) inclusion of q

nonlinear eddy viscosity in the code. These modifications will now '_e

discussed in order.

4.1 Semi-lmplicit Treatment of the Nonlinear Terms

The most severe restriction on the size of time steps _n the uur,erlcal I

calculations reported by Metcalfe and Orszag (1975) is due to the convective

stability restrictions originating from the large axial Jet velocity: if

the maximum Jet velocity is U and the axial grid (or Fourier) resolution

is Ax , then tlme steps in an explicit time integration scheme are a

restricted by At < Ax/U .

Metcalfe and 0rszag (1975) have developed a method that significantly

where v
relaxes the above time-stepping restriction to At < Ax/vrm s rms

is the rms turbulent velocity. Since v --U/5 , the new time steppingrms

scheme allows time steps that are several times large than those without

the semi-lmpllcit scheme.

The technique for implementing the semi-lmpllcit scheme is to split the

total velocity into two parts: 4

v = V + v' (12)

where _ is the mean axial flow and _' is the fluctuatlng velocity. The 4

nonlinear term representln8 the advection of v by V iS treated implicitly,

while the nonlinear term Involvln8 the advection of _ by v' is treated

explicitly. Thus, the smi-_mpllclt treament of the nonlinear terms

involves the solution of the implicit equation

+ v(r) 1

in which V a_d f are known. The implicit solution of (13) is easily done

in the spectral representation in x 1 because the mean velocity V is _

independent of x 1 in the flow model. Thus, if k is the Fourier variable _

1976023833-012
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conjugate to the coordinate xI , the solution to (13) using Crank-Nicolson

time-dlfferenclng is simply

+ _.+_-_t) - ikV(r)Atv(k,Xl,Xj,t)

1
(i + _ Ik V(r)At) (14)

4.2 Isentropic Compressible Flow

The compressible flow equations for isentropic flow in a polytropic gas

are

+ - 0 (16)_t

p • KOY . (17)

The method of solution (15)-(17) is very similar to that of (i)-(2).

All flow variables are expanded in the Fourier series (5), which is used to

effect the evaluation of derivatives appearing in (15)-(17). The necessary

modifications in the codes have been made to implement simulations wlth

32 _ 32 x 32 Fourier components used to resolve each of the flow variables.

The running time is 8s per time step.

Preliminary studies have been made of another modification in this
i

compressible flow code, viz. the inclusion of non-lsentroplc flow effects.

Gottlieb and Orsza$ (1976) nave studied the accuracy and efficiency of the

i spectral methods used in the Jet flow simulations for the calculation of

highly compressible flows with shocks. The results of these calculations
* t

are _ncoura$1n$ in the sense that shocks can be resolved ac:uzetely with very

i few dynlmlcal degrees of freedom if localized dlsslp_ion is _posed i_ the

neighborhood of the shock.

_ 4.3 Nonlinear FAdy Viscosity

The codes developed by Metcalfe and Orsza$ (1975) havt been modified to. include the affect of subirid scale turbulence by means of a nonlinear edQy

i
a .
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viscosity similar to that employed by Deardorff (1970) and others. Deardorff

(1970) has modeled subgrid scale effects by including a term with an eddy Q

coefficient proportional to the local velocity deformation. In the simula-

tions reported here, subgrid scale turbulence has been modeled by adding a

term to equation (i) that is proportional to the root mean squace vor_icity.

The simulation of the jet flow at 8 diameters downstream from the jet exit

has been repeated, using this modified form of energy dissipation. The

results of this simulation are quite striking. When velocity contours of

the two simulations are compared there is no noticeable difference at the

computation time of 0.032, which is in the interval of times used for the

calculations reported in Sec. 3. It is concluded that there is no significant

Reynolds number effect on the velocity fields used for the numerical simula-

tions. However, there may still be a Reynolds number effect on the quadruple

moment fields used for the acoustic source field; comparisons of the

simulations of Metcalfe and Orszag (1975) with the simulation made using the

nonlinear eddy viscosity are inconclusive on this latter point. The Reynolds

number variation of the quadrupole moment fi=ids are still a matter of

research interest, which will be studied with the use of these codes. I

Q
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5. Summar7

This report has discussed the progress in the numerical simulation of

jet turbulence and aerodyna_-ic noise radiated by jets. It is believed that

a significant breakthroug _ ." he numerical simulation of a turbulent jet's

noise radiation pattern ,_s been achieved. The results plotted in Fig. 7

show good qualitative agreement with those determined experimentally (plotted

in Fig. 8) despite the limited computer resolutic., of the present computations.

This is not a trivial accomplishment; for example, if a ring vortex model is

used to simulate the quadrupole moment field of a turbulent jet, the radiation

field is axisymmetric and perfectly correlated around the Jet. There is no

decorrelation with increasing _ ia a ring vortex model. Nevertheless,

solution of the three-dimensional Navier-Stokes equations, even with the

limited flow model presented here, gives striking confirmation of the

experimental results. It should be expected that improvements in the flow

model and increased computer resolution will improve the quantitative agreement

between numerical and laboratory and field experiments.

Finally, in Sec. 4 the improvements made in the flow model and in the

numerical techniques for its solution have been summarized. As mentioned

earlier, the principal area for further improvement involves the treatment

of the boundary conditions. However, improvements of the treatment o_ the

boundary conditions will require substantially more computer resolution than

presently available. It will not be possible to isolate a small section of

the Jet to be simulated independently of other sections of the jet; it will

not be possible _.oneglect effects of entrainment of fluid from infinity or

effects at the Jet exit. It seems that such substantial improvement of the

flow model must await the next generation of powerful computers.

i

|
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Figure 4. Contour plot of Vl(Xl,X2,X 3) in the plane Xl=½L

at X = 12 diameters downstream from the jet exit. Here t = .032s

is the timo of evolution.
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